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Abstract: Recently a negative nuclear Overhauser effect (NOE) among the backbone protons as well as a positive NOE between 
the backbone and ring protons of tryptophan in a peptide was reported. While the negative NOE is indicative of slow overall 
reorientation of the molecule, simultaneous occurrence of a positive NOE is indicative of internal motions in the molecule. 
To explain these observations we develop here a model in which the overall motion is anisotropic reorientation and the internal 
motion modulates the internuclear distance. Analytical expressions for the spectral density functions for dipole-dipole relaxation 
are obtained when the internal motion is a bistable jump. Steady-state and transient NOE calculations are performed for 
two relaxation-coupled spins. The results confirm that when the overall motion is in the slow motion limit and the side chain 
internal motion is in the fast motion limit, the NOE within the backbone protons is negative and that between the backbone 
and the side chain protons is positive. This model further shows that the NOE between the backbone and the side chain is 
proportional to the weighted average of the inverse sixth power of the distance between the interacting spins only when the 
overall motion is isotropic, dominates the relaxation process and is much faster than the internal motion. With use of this 
model, multispin steady-state NOE's are computed to explain the experimental observation of positive and negative NOE's 
and their temperature dependence in a tryptophan-containing polypeptide. 

I. Introduction 
1H-1H nuclear Overhauser effect (NOE) spectroscopy is an 

important tool for the study of structure and dynamics in organic 
molecules and biomolecules.1"4 This unique method, which can 
determine the three-dimensional structure of molecules in solution, 
has in recent years become of central importance among NMR 
spectroscopists.4"* The magnitude and the sign of NOE's are 
crucially dependent on the motional rates represented by the 
correlation time of reorientation (TC) and the Larmor frequency 
(OJ). Under the assumption of isotropic random reorientation of 
the molecule the NOE between two mutually relaxing spins is 
positive for fast reorientations (O>TC « 1, also known as the short 
correlation limit) and negative for slow reorientations (WTC » 1, 
the long correlation or spin diffusion limit).7 Recently in a 
polypeptide 

Boc-Cys-Val-Trp-OMe 

Boc-Cys-Val-Trp-OMe 
1 

negative NOE was reported among the backbone protons and 
positive NOE between the backbone and the ring protons.8 This 
situation is indicative of internal motions, and the estimation of 
the NOE between the backbone and the ring protons is not 
straightforward. To explain these observations in detail, in the 
present paper we build a model which includes anisotropic re­
orientation of the whole molecule with segmental motion of a 
portion with modulation of internuclear distances. While the 
spectral densities have been calculated analytically for a general 
internal motion, the results are discussed in detail for a bistable 
jump, since, in the present case, the motion of the ring protons 
is of interest. 

A large number of models have been proposed to account for 
internal motions in relaxation studies. Woessner laid the ground 
work in this field by first giving a model having isotropic reori­
entation with internal motion and later generalized it to anisotropic 
reorientation.9"1' Internal motion has been treated as continuous 
diffusion,12"14 restricted diffusion,15"17 lattice jumps,12,16"18 wobbling 
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in a cone,19 and libration in a cone.20 Applications of these models 
have also been widely reviewed.21 Other "model free" approaches 
that include internal motion as effective order parameters have 
also been proposed.22"24 Modulation of the distance between the 
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interacting spins due to internal motion was treated in the following 
studies. Woessner treated the case of two methyl groups internally 
reorienting independently.25 Tsutsumi26 and Bluhm27 calculated 
the case of internal motion between three nonequivalent sites, while 
John et al. treated it as a stochastic diffusion.28 Tropp29 has also 
investigated the effect of fluctuating internuclear distances, and 
these results have been used in 31P-1H relaxation studies in DNA.30 

Bistable jump motional models are of particular interest in view 
of the proline and other ring conformations.15'18,31"35 The bistable 
jump model proposed by London et al.15,18,31 and later modified 
by Shekar et al.32'33 is utilized to explain the 13C relaxation time 
measurement in the proline molecule. Sarkar et al.34 have also 
studied the conformation flexibilities of deuterated proline in 
solid-state NMR spectroscopy, while recently Mddi et al.35 have 
explicitly used modern NMR methodology in combination with 
the 13C relaxation time measurements to study the conformation 
of the four proline residues in antamanide. 

In this paper analytical expressions for the correlation function 
are obtained for the general case when the overall motion is 
anisotropic rotational diffusion and the segmental motion mod­
ulates the internuclear distance and is independent of the overall 
motion. These calculations are aimed at understanding the nuclear 
Overhauser effect and utilize bistable jump as a model for the 
internal motion. The spectral density functions are calculated 
on the basis of the method of Woessner. These calculations clearly 
show that the transfer of NOE in the presence of segmental motion 
is governed by the weighted average of the inverse sixth power 
of the distances between the spins only when the overall motion 
is isotropic and is fast compared to the internal motion. Both 
steady-state and transient NOE's have been calculated by using 
the model for the two-spin system. The simultaneous observation 
of positive and negative steady-state NOE's in the tryptophan-
containing polypeptide and its temperature dependence are ex­
plained. Section II contains the calculations of the general spectral 
density functions, and section III contains the analytical ex­
pressions for the spectral density functions when the overall motion 
is anisotropic rotational diffusion and the internal motion is a 
bistable jump. In section IV the effects of dynamic parameters 
involved in the two-spin steady state and transient NOE exper­
iments are presented, while section V discusses experimental 
results. 

II. Theory 
The correlation function for anisotropic rotational diffusion of the 

overall motion of the molecule, with internal motion independent of the 
overall motion, is obtained by using the method described by Woess­
ner.10'11 The nature of the internal motion is kept general in this section, 
so that any particular model of internal motion can be assumed as a 
specific case. Consider the molecular fragment shown in Figure 1 con­
sisting of atoms A, B, C, and D with the vector CD (denoted as F1), 
making a segmental motion about the BC bond (Z1 axis). The motion 
of ?| about BC modulates both direction and magnitude of the internu­
clear vector AD (denoted as f). 

The spectral density function of the magnetic dipole-dipole relaxation 
process is given by the Fourier components of the correlation function 
C ( T ) as36 
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Figure 1. Model molecular fragment considered to calculate the spectral 
density functions with modulation of internuclear distances due to seg­
mental motion. Atoms A, B, C, and D form the four bonded nuclei in 
which B and C are the carbons and A and D are the protons between 
which the NOE is studied. The segmental motion through the B-C bond 
makes the internuclear vector AD) time dependent. S'(X',Y',Z') is the 
molecular fixed frame that undergoes an overall anisotropic rotational 
reorientation in the laboratory reference frame and a superimposed in­
ternal motion, independent of the overall motion about an axis Z1 in the 
internal reference frame S1(X1^Z1). The angle between the Z axes of 
these two frames is given by the molecular geometry as A = ZABC - TT/2. 
The vector T1 (which is constant in S1) makes a polar angle /3 and an 
azimuthal angle a in the S\ frame. The frame SC(XC,YC,ZC) is a frame 
of convenience to calculate the direction cosines of the internuclear vector 
as described in the Appendix and in Figure 6. 

G(T), the autocorrelation function of the stationary random process, is 
defined as36 

G„(T) = (Fh(t)Fh*(t + T)) (2) 

where F^t) are given by 

F0(I) = (1 - 3 « V 3 F1(I) = (! + im)m-3 

F2U) = (/ + im)2r3 

I, m, and n are the direction cosines of the internuclear vector in the 
laboratory coordinate system S(X,Y,Z) and r is the magnitude of the 
internuclear vector. Thermal motions of the physical system cause Fh(t) 
to be time dependent via the temporal fluctuations of /, m, n, and r. The 
angular brackets, ( ), in eq 2 stand for averaging over the random 
motions. 

Denote by S0(A^1K01Z0) a stationary reference frame which is ran­
domly oriented in S, with respect to which the rotational Brownian 
motion of the molecule is described, and by S\X',Y',Zr) a coordinate 
frame fixed to the molecule, such that the axes of S ' coincide with the 
three ellipsoidal axes. Let /', m', and n' be the direction cosines of the 
internuclear vector in S'at time t and due to internal motions let /", m" 
and n"bt the respective direction cosines at a later time / + T. Also, r' 
and r"are the internuclear distances at time t and t + T, respectively. 
Following Woessner's treatment,10 which takes into account the trans­
formation from the molecule fixed frame to S0 and an isotropic average 
over all possible orientation of S 0 with respect to S, the autocorrelation 
function G(T) of eq 2 is given by 

G11(T) = 1AK11(C+ exp(- |T|/r+) + C. exp(-|r | /T.) + 
C1 exp(- | r | / r , ) + C2 exp(-|r |/T2) + C3 exp(-|r|/T3)>.v (4) 

in which 

1 / T , = 4 # , + K2 + # 3 , 1 / T 2 = AJi2 + Ji1 + A3, 1 / T 3 = 
4 # 3 + Xi + Jl2 (5) 

C± = d =F e 

C1 = 6m'«'m"/iV-V"-3, C2 = kl'n'l"n"r"3r"-\ 
(6) 

C3 = 6/ 'm'/"m>'- !r"-1 

with 

(36) Abragam, A. Principles of Nuclear Magnetism; Oxford University 
Press: New York, 1961; pp 270-280. 



7544 J. Am. Chem. Soc, Vol. 113, No. 20, 1991 Krishnan et al. 

d = '/2[3(/'2/"2 + m'2m"2 + n'2n"2) - l]r'-V""3 

e = ViWI'2!"2 + m'V' 2 + n'2m"2) + S2(m'2m"2 + l'2n"2 + 
n'2l"2) + a3(fl'V2 + l'2m"2 + m'2l"2)]r'-ir"-i (7) 

Ji1, Ji2, and ft3 are the rotational diffusion constants of the ellipsoid 
about the X', and Y', and Z' axes of the S' frame. The values of T+ and 
T. are given by 

(8) 1/T± = 6[ft± (ft2-X2)"2] 

where 

ft = (ft, + ft2 + ft3)/3 

and 8, in eq 7 are given by 

L2 = (ft,ft2 + ft,ft3 + ft2ft3)/3 (9) 

S1 = (ft ,- ft)/'V'ft2- L2 (io) 

The constants /^ in eq 4 are defined as 

^o = k K\ = /is! ^2 (H) 

The angular bracket (< )„) in eq 4 is the average over the values specified 
by the internuclear vector and the direction cosines due to the internal 
motion, and the average over the ellipsoidal motion has been taken care 
of in terms of the constants C+, C_, etc. It is worth mentioning at this 
point that the cross term between different h values for a single dipolar 
vector vanishes and has explicitly been proved earlier.33 The /, m, and 
n are to be calculated for the given motional model, and by substituting 
them into eqs 4-10, the correlation function can be obtained. 

To characterize the internal rotation, assume a coordinate system 
S\(XvYhZ^, where Z1 is along the internal rotation axis, the B-C, bond 
as shown in Figure 1. Since the length of T1 is constant, the time de­
pendence rh introduced about the Z1 axis due to segmental motion, can 
be obtained in terms of the time dependence of the azimuthal angle a 
(see Figure 6 in the Appendix). If ct(t) and a(t + T) are the azimuthal 
angles at times t and t + T of ft, respectively, in Sh then from the 
geometry (details are given in the Appendix), the direction cosines of f 
in the reference frame of convenience, Sc, at any instant of time are 

WO = Uo + kx cos ««))A(0 mc(0 = (*, sin a(0) A(O 

«c(0 = (*o + * , cosa(0)A(0 0 2 ) 

r(t) is the time-dependent internuclear distance given by 

/-2W = 'o2 + K* cos o(0 

The constants defined in eqs 12 and 13 are given by 

*o = rAB + rBC sin A + /•, cos 0 sin A 

Z0= Tg0 cos A + r, cos /3 cos A r0
2 = x0

2 + Z0
2 + rt

2 sin2 0 
kx = -/•] sin 0 cos A ky = -r, sin 0 kz = rt sin 0 sin A 

k,2 = -2rABr| sin 0 cos A 

where rAB and rBC are the interspin distances between the atoms A and 
B and B and C, respectively, and are time independent, 0 is the semiangle 
of the cone of internal motion formed by the Z1 axis and the vector r,, 
and A is given in terms of the molecular geometry as ZABC - jr/2 
(details in the Appendix). The direction cosines of the internuclear vector 
in the ellipsoidal frame S'(X',Y',Z') are given by the transformation in 
the Euler angles (<j>,d,\p) from the intermediate reference frame (Sc-
(Ac, K0Zc) as 

(13) 

(14) 

«11 
Q 2 1 

O31 

fl12 

<*22 
a 3 2 

a 1 3 

"23 
O 3 3 . 

l c « 
"WO 

."cWj 
where 

no 
m'(t) 
n'it) 

flu = cos ^ cos 0 - cos iJ sin <t> sin \p 

O12 = -sin Î  cos <(> - cos 0 sin <j> cos ip 

a,3 = sin t? sin <t> 

a2i " -cos <p sin <t> + cos 0 cos 0 sin \j/ 

a22 = -sin ^ sin 0 + cos i5 cos 0 cos \p 

a23 = -sin i5 cos 0 

a31 = sin i> sin \(/ 

a32 = sin <? cos \p 

a33 = cos 0 

05) 

Similarly /"(/ + T), m"(t + T), and n"(t + T) can be defined with the 
same transformation matrix as given in eq 15. The values 0, 0, and <p 
are specific to the geometry of the molecule and motional model. By 
substituting for the /, m, and n in eqs 6 and 7 at times t and r + T the 
expression for the correlation time, eq 2 can be written as 

G(T) = xhKh(Q[l\t),m\t),n\t)\l'\t + r),m"(l + r),n"(t + T)]>„ 
(17) 

Q can be calculated for a specific model of internal motion, which for 
a bistable jump is obtained analytically in the next section. The ex­
pression of G(r) in eq 17 is general and can be extended to more than 
four atoms in a given framework by successive transformations in Euler 
angles by considering four atoms to start with, as is done in the case of 
multiple internal rotations in aliphatic chains.13"16 

III. Bistable Jump Model for Internal Motion 
Random jump between various stable conformations is an im­

portant motional process of relaxation in organic molecules and 
biomolecules. It is known from the studies of proteins in the solid 
state that the aromatic moieties undergo a flip motion in the 
protein matrix, and these motions play an important role in un­
derstanding various biological activities.37 The flip motion in the 
solid state is normally a 180° flip about the C^-C1, axis of the 
amino acids having aromatic side chains and is relatively fast in 
the residues tyrosine and phenylalanine compared to that in 
tryptophan.37 Explicit study of the motional aspects of the aro­
matic residues in basic pancreatic trypsin inhibitor (BPTI) by 
Wiithrich and co-workers38'39 confirms such flip motions even in 
the liquid state. Hence assuming the internal motion as a flip 
motion about the C^-O axis of the aromatic side chain seems 
appropriate. For an n site jump the Q given in eq 17 can be written 
as 

(Q)= £ QimmMMO 
\lj(t + T),ntj(t + T),nj(t + r)]p(i,t[j,t + r) (18) 

The average in eq 17, due to the internal motion, is determined 
by weighted summation over all n sites. p(i,t\j,t + T) is the 
probability of finding the system (d-d vector), taking the state 
i at time / and j at time t + T,36 and can be written as 

p(i,t\j,t + T) = P(i,t\j,t + r)p(Ut) (19) 

where P(i,t\j,t + T) is the conditional probability of the system 
that takes the state j at time / + T when it is known that it takes 
the state i at time t. For a bistable jump, where the dipolar vector 
changes its orientation between two possible sites a and b, eq 18 
becomes 

(Q) = (?(/a,wa,na|/a,ffia,rta)p(a,/|a,f + T) + 
Wa,wa,/ja|/b,wb,rtb)p(a,/|b,f + T) + 
<?(/b,mb,Mb|/a,ma,rta)p(b(f|a,r + r) + 

<?(/b,wb,nb|/b,wb,nb)p(b,/|b,< + T) (20) 

where /a, ma, and «a are the direction cosines of the site a and /b, 
mb, and «b are those of the site b. Probabilities p(i,t\j,t + r) are 
the probability functions defined in eq 19 and take the following 
form for a bistable jump model31"33 

p(a,fkV + T) = 7—-Ar1 + rb exp(-|T|/Tc)] 
(ra + rb)2L 

p(b,t\b,t + T) -
^b 

(r . + rb)2 
[Tb + T8 exp(-|T|/Tc)] 

P(a,t|b,f + T) = 
T1Tf, 

(T1 + Tb)2 
[1 - exp(-|T|/T«)] = A>(b,»|a,t + T) 

(21) 

(16) 

(37) (a) Gurd, F. R. N.; Rothgeb, T. M. Adv. Protein Chem. 1979, 33, 
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Stimson, E. R.; Meinwalld, Y. C; Freed, J. H.; Scheraga, H. A. /. Am. Chem. 
Soc. 1981, 103, 7707-7710. (c) Gall, C. M.; Cross, T. A.; DiVerdi, J. A.; 
Opella, S. J. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 101-105. 
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where T„ and rb are the lifetimes of the dipolar vector in sites a 
and b, respedtively. TC is defined as 

1 / T C - 1 / T , + 1/T„ (22) 

Utilizing the fact, from eq 21, that p(&,t\b,t + T) and p(b,f|a,/ 
+ T) are equal, eq 20 can be written as 
«?> = 2(>(/a,ma,«a|/b,mb,nb)p(a,r|b,/ + T) + 

CK/a,ma,/ja|/a,ma,na)/?(a,/|a,/ + T) + 

<?(/b,mb,/ib|/b,»tb,nb)p(b,r|b,f + T) (23) 

The first term in eq 23 can be rewritten by using eq 4 as 

2Wa.'"a,na|/b.'Hb,nb)
 = lC+(/„ma,«a|/b,wb,nb) CXP(-|T|/T+) + 

C_(/.,ma>n.|/b,mb,nb) exp(-|T|/r.) + 
^(/,,^!,,/!,!/,,,m,,,/!,,) exp(-|T|/T,) + 
C2(/a,wa,na|/b,wb,nb) exp(-|T|/T2) + 

C3(/.,wa,na|/b,wb,«b) exp(-|T|/T3)Jp(a,/|b,/ + T) (24) 

By substituting Cs from eqs 6 and 7, the above equation becomes 

2«/a,ma,na|/b,mb,«b) = - ^ l ( n a b - 6ab) exp(-|r|/r+) + 
(nab + eab) exP(-|T|/T-) + r £ exP(-M/T,) + 

Tx) exp(-|r|/r2) + rab exp(-|r|/r3)}p(a,?|b,/ + r) (25) 

where 

nab = [3(xav + y»W + 1.V)VV2I - i 
eab = [s^W + y*W + *aV) + S2Cy8V + * .V + 

za V ) + «3(*.V + *, V + * V) ] V V 2 

TJb = 1 2 O v ) W b W 2 T»b = 12(X3XbZ3Zb)VV6-
2 

r j b = 1 2 ( X 1 X ^ ) V V 2 

where ra, /-b, xa, y„ z„ ... are defined in terms of the direction 
cosines of eqs 12-16. On substituting the probability function 
from eq 21 in eq 25 one obtains 
2@(/a,wa,na|/b,wb,nb) = 

I / ' ? 2 3 3 l (n°b " e>b ) eXPHTl/T+> + 
(r. + rb)

2raVb
3 

( n»b + e .b) e xp(-|T|/T.) + Tf2 exp(-|r|/T,) + 
TJb exp(-|T|/T2) + TJb exp(-|r|/r3))(l - exp(-|r|/Tc)) (27) 

By writing similar expressions for the second and third terms of 
eq 23, using them in eqs 4-10, and taking the Fourier components 
(eq 1), the spectral density functions of the anisotropic rotational 
diffusion of the overall motion with a bistable jump segmental 
motion are obtained as 
J„(u) = V2KHMA+MT+) + AMr-) + A\fh(r\) + 

A'Mr'.) + AyM^) + A'y/h(r\) + AX/„(T2) + 
A\MT\) + AxMr1) + /1W,,(T'3)} (28) 

where A = TaTb/2(Ta + Tb)
2ra

3V an^ A's are the amplitudes given 
by 

A± = 

2(nab T e ,b) + ^ , - ' ( i i " T e") + /?T-'/?r
3(nbb =F ebb) 

A ' * - -2(n , b T e ,b) + R-\nu T eaa) + /?,3(nbb =F ebb) 

A,j = 2r?/ + R7R^Tf + RT-lR>r$ 

A ',j = -2r?/ + R-3TfI + RfTf (29) 

with i ^. j - x, y, z. 

Rr " Ta/Tb; R1. = r a / r b 

1 / T ' + = l / r + + 1/T« 

1/T'_ = I T . + 1/TC 

1/T ' , = 1 /T , + 1/TC 
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1 / T ' 2 = 1 / T 2 + 1 / T C 

l / T ' j - l / T j + l T , (30) 

and 

MT) = 2 T / ( 1 + (AUT)2) (31) 

The spectral density functions depend on ten correlation times 
for the bistable jump. For an n site jump the spectral density 
functions will be complicated and the number of correlation times 
governing the motion will be 5«, with their corresponding geo­
metrical weighting factors. The n site jump model with n-*<*>, 
with a Gaussian probability distribution, goes over to the con­
tinuous diffusion model having a single correlation time for the 
internal motion.9,10 It may be mentioned here that if the internal 
motion does not modulate the internuclear distance (ra = rb) the 
correlation times in eq 30 remain unaltered but the relative 
weighting factors of the correlation function are changed. For 
internal motion involving more than two sites, analytical ex­
pressions are complex and numerical calculation of spectral density 
functions may be preferred. Equation 28 contains spectral density 
functions for anisotropic overall reorientation which reduce under 
various simplifications, as described below. 

(A) Overall Motion of the Axially Symmetric Ellipsoid. Instead 
of a complete anisotropic rotational diffusion, if an axially sym­
metric ellipsoid is assumed then two of the diffusion constants 
are equal (OR2 = # 3 resulting in T2 = T3 and T'2 = T'3). The 
definitions in eqs 5-10 become 

1/T, = 4.7?, + 2#2, 1/T2 = 1/T3 = # , + 5fl2 

1/T± = 6 [ ^ ± ( ^ 2 - - C 2 ) ' / 2 ] 

X2 = (2.A1A2 + tf2
2)/3 (32) 

and eq 28 reduces to the form 

/»(«) = y2KhA{A+Mr+) + AMr-) + A\Mr'+) + 
A'Mr'-) + AyMr x) + A'yMr\) + (.Ax, + Axz)Mr2) + 

(A'xy + A'X2)Mr'2)\ (33) 

The number of correlation times in this case reduces to eight. 
Axially symmetric rotational diffusion is an important process 
of relaxation in long-chain molecules such as a-helix or polymer 
chain in solution. In such a situation the major axis of the axially 
symmetric ellipsoid may be assigned to the axis of the helix or 
the long axis of the polymer chain and II, 0, and T are obtained 
by using the Euler angle transformation given in eq 15. 

(B) Isotropic Rotational Diffusion. Under the assumption of 
isotropic random reorientation of the overall molecule, the diffusion 
constants along the three axes are equal (̂ f1 = Ti2 - !R3, resulting 
in T1 = T2 = T3 = T+ = T. = Tg and T\ = T'2 = T'3 = T'+ = T'_ 

= T6). The global motion can be represented by a single correlation 
time T8 given by 1/6.7?, and the internal motion by an effective 
correlation time TC. Moreover, for an isotropic rotational diffusion, 
the various direction cosines calculated in the S c frame are equal 
to the direction cosines in the ellipsoidal frame (Euler transfor­
mation matrix in eq 15 in a unit matrix). This approximation 
reduces eq 33 to 

/,(«) = K11A[AMr,) + A'Mrt)] (34) 

where 
A = A+ + A. + Axy + AX! + Ay1 

= ([2nab + r jb + r j b + T\\\ + ^?rRr-
3[2naa + r j ; + 

rja* + TX\\ + /?f
3/?T-'[2nbb + rbb + rbb + rbb]) 

and 
A' = A\ + A'. + A'xy + A'X! + A'yl 

= (-[2nab + r j b + Tx) + rjb] + flr-
3[2naa + raa + Tx) + 

rjj] + Kr
3[2nbb + rbb + rbb + rbb]) 

(35) 

With Te"' = Tg"1 + V 1 . 
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With use of the definitions of nab and rab from eq 26 the above 
equation can be rewritten as 

• / * ( « ) = 

, _ *Wb ffT.V + TbV , J „ , a)-(r.+^wH"^^r+T(T 

[̂ 4 "*(T.)> (36) 

where 

Q = [3(Ataxb + y,yb + zazb)
2/ra

2/-b
2] - 1 (37) 

Equation 36 gives the spectral density functions for a bistable jump 
segmental motion with an overall isotropic motion. The spectral 
density function in eq 36 can thus be considered as having a 
contribution from two processes: one describing the overall re­
orientation of the molecule given by the first term and having a 
correlation time rg and the other given by the second term de­
scribing the segmental motion through an effective correlation 
time, Te. For /3 = 0° and 180°, the spin D is collinear with the 
vector BC about which the internal motion is assumed to take 
place. In such a circumstance there is no internal motion and 
the spectral density functions in eq 36 reduce, for ra = Tb, to 

/»(«) = KMr1)Zr0
6 (38) 

where r0 is obtained by using eqs 12-14 as 

'o2 " 'AB2 + ('BC ± 'i)2 ~ 2rAB(rBC ± /-,) cos (/ABC) (39) 

with (/1BC + T1) and (rBC - r,) corresponding to /3 = 0° and 180°, 
respectively. 

For all other values of /3, there is internal motion accompanied 
by a modulation of the internuclear distance in the present model. 
In order to compare the results of this model to earlier models 
in which internal motion without modulation of the internuclear 
distance was assumed, substituting an effective rab = ra = rb, eq 
36 reduces to the earlier known result32'33 as 

y*(w) = , x \i 6<tT»2 + ^ + VbOlZi(T1) + (T. + Tb)Vab
6 

[rarb(2 - Q)l/i(T,)} (40) 

When the internal motion is fast compared to the overall motion 
(TC « T8) and eq 36 is modified with T6 = TC, both motions 
contribute to the spectral density functions. However, when the 
overall motion is fast compared to the internal motion (T, « TC), 
TC = Tg, in other words the spectral density components due to 
the effective and the overall motion are of the same order [(fh(rc) 
=* A(Tg)], eq 36 gives 

• / * ( « ) = 

l + Xl 6 6 ^ V + V'a6 + W ' a 6 + ^)IZi(T1) (41) 
^T3 T Tb) ra rb 

and the global motion dominates the spectral density function. 
Further assuming that T„ and Tb are equal, eq 41 becomes 

/»(«) = KMr%)\ ± + ±- (42) 

Equation 41 shows that the effective spectral density function is 
proportional to the weighted average of the inverse sixth power 
of the distances of the two sites, only when the global and the 
effective motion are of the same order or equivalentIy when the 
overall motion is much faster than the internal motion. Equation 
42 shows that it is a direct average when the two sites are equally 
populated. 

It may be mentioned that for anisotropic reorientation with the 
assumption that the overall motion is fast compared to internal 
motion, all the primed correlation times become equal to the 
corresponding unprimed correlation times (/* = T±; r7, = T,; Z2 
= T2; T'3 = T3). Under this condition the total spectral density 
functions (eq 28) reduce to the weighted average of the spectral 

density functions for each site undergoing anisotropic reorientation 
rather than those corresponding to a weighted average of the 
inverse sixth power of the internuclear distances.40 

When both relaxing spins are on the side chain undergoing 
internal motion, the internuclear distance is not modulated but 
the segmental motion affects relaxation. The spectral density 
functions corresponding to such a situation are obtained by sub­
stitution of rAB = rBC = 0 in eq 14 and assuming Ta = Tb, as 

J„(u) - ^{ [2 + OTZi(T1) + [2 ftlZiWI (43) 

with 
fi' = 3[cos2 /3 + sin2 /3 cos (a, - ab)]2 - 1 

where r is the internuclear distance and aa and ab are the azi-
muthal angles of the two sites. In this situation, (3, the semiangle 
of the cone of internal rotation, becomes also the angle between 
the internuclear vector and the axis of internal rotation. When 
there is no internal motion (aa = ab yielding Q' = 2) or when the 
overall isotropic motion is fast compared to the internal motion 
(Zi(Tg) = A(Te)), the spectral density functions reduce to 

/»(«) = KMr1)Zr6 (44) 

In general, the two-site jump model discussed above can be 
extended to three-or-more-site jumps, but such a situation is not 
always reduced to an analytical form and the total number of 
correlation times involved will also be large. More work is needed 
to include the multisite jump models and stochastic diffusion of 
the internal motion. 

IV. Results 
Steady-state and transient NOE's for two mutually relaxing 

spins undergoing overall isotropic rotational reorientation and a 
bistable segmental motion modulating the internuclear distance 
are calculated in this section. The NOE is calculated for all 
motional regimes for the global motion and short correlation limit 
for segmental motion. The NOE is calculated between the spins 
A and D (Figure 1) with A-B and B-C bond lengths as standard 
H"-C" and C - O bond lengths, respectively, and the CD distance 
(vector ?\) is calculated as 1.367 A from the standard tryptophan 
geometry.41 

(A) Steady-State NOE Experiments. The two-spin steady-state 
NOE (?;ss) on complete saturation of either one of the spins (A 
or D, Figure 1) is given by42 

VK = (W2-W0)Z(W0 +2W1 + W1) (45) 

where the transition probabilities of dipole-dipole relaxation (Ws) 
are given by42 

W0 =
 9/167

4fcV0(W) W1 = »/167«AV,(«) 

W2 = '/474JiV2(U) 
(46) 

By substituting for spectral densities from eq 36 along with the 
equal population of the bistable jump (TS = Tb), eq 45 becomes 

(6W2t- W0g) +(6W^-W0J 
Vs° (6W2g + 3Wlg + W01) + (6W1, + 3W1, + W0,)

 ( 4 7 ) 

where WH = 1/+Zi(T1), Wht = UJ-„(T,), h = O, 1, and 2 and 

U± = [K6 + ' b
6 ) / ( r a V) ± O] (48) 

The steady-state NOE is dependent on both global and effective 
motions. The NOE is also sensitive to the molecular geometry 
through the constants U±. Figure 2 shows the steady-state NOE 
as a function of the semiangle of the cone of internal motion j8, 
for various values of the azimuthal angle a. The calculated NOE 
for O)Tg equal to 0.1, 1.118, and 10 is shown respectively in Figure 
2, a, b, and c. The bistable jump in these calculations is taken 

(40) Krishnan, V. V. Ph.D. Thesis, Indian Institute of Science, Bangalore, 
1991. 

(41) Momany, F. A.; Mcguire, R. F.; Burgess, A. W.; Scheraga, H. A. J. 
Phys. Chem. 1975, 19, 2361-2381. 

(42) Solomon, I. Phys. Rec. 1955, 99, 559-565. 
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Figure 2. Two-spin steady-state NOE (vu) defined in eq 47 plotted as 
a function of 0, for different values of O>T,: (a) WT, = 0.1, (b) ari = 
1.118, and (c) WT, = 10, a> = 270 MHz, and for three different values 
of or, viz. a = 30° (continuous curve), a = 60" (dashed-dotted curve) and 
a M 90° (dotted curve). The segmental motion is assumed to be in the 
short correlation limit (WTC = 0.1) for all the curves and the bistable jump 
is through 180°. The IJU obtained when an isotropic overall motion 
without any internal motion is assumed is shown by dashed lines. The 
dashed line in (b) corresponds to null NOE. These plots are obtained 
by using the molecular model shown in Figure 1, with rAB = 1.07 A (C-H 
bond distance), rK = 1.54 A (C-C bond distance), rt = 1.367 A (dis­
tance between the C carbon to the C7 proton from the standard tryp­
tophan geometry41), and A is assumed to be 30°. For these values the 
intemuclear distance is modulated between the two values 3.268 and 
3.635 A, 2.77 and 3.473 A and 2.121 and 3.093 A for /3 = 30°, 60°, and 
90°, respectively. 

as 180°. The two-spin steady-state NOE for isotropic reorientation 
without internal motion and in the absence of any other relaxation 
pathway is independent of the intemuclear distance and is shown 
as dashed lines. For 0 = 0° there is no internal motion andrthe 
dashed and full curves coincide. It is noted that the additional 
segmental motion reduces the effective correlation time in each 
case, with the exact contribution being geometry (0 and a) de­
pendent. The critical correlation regime (wrg = 1.118) shows most 
dramatic results by giving 10-12% positive NOE instead of null. 
From Figure 2, it is also seen that the effect of a, which defines 
the plane of the bistable jump, is significant only for large values 
of /3, since for small values of 8 the modulation of the intemuclear 
vector is small for all values of a. 

It is evident from the above discussions and Figure 2 that the 
effect of segmental motion is not negligible in the steady-state 
NOE experiments. These steady-state NOE results have, however, 
been obtained strictly for a two-spin system and may not be 
directly usable in realistic experimental situations without building 
in additional relaxation pathways or leakage mechanisms. For 
example, without the leakage mechanism the two-spin steady-state 
NOE, without internal motion becomes independent of the in­
temuclear distance. In real situations one has often to build in 

Tm (sees.) 

Figure 3. Transient NOE on spin D as a function of the mixing time, 
when spin A is inverted, for different values of WT,, (a) 0.1, (b) 1.118, 
and (c) 10, with w = 270 MHz and the correlation factor of internal 
motion being at ure = OA. The continuous curves show the NOE for 
three values of 0 (30°, 60°, and 90°) with modulation of intemuclear 
distances, and the dashed curves correspond to the NOE when the dis­
tance between the spins is assumed to be the average of the distances of 
the two bistable sites as r„~* = (r,"6 + rb"

6)/2 and relaxing with a single 
correlation time (T.) without internal motion. The dashed line in (b) 
corresponds to null NOE. a is zero for all curves. The remaining 
parameters are the same as in Figure 2. 

leakage terms43 or extend the calculation to multispins. 
(B) Transient NOE Experiments. In transient NOE experi­

ments, the magnetization of one of the spins is inverted and that 
of the other is observed as a function of the mixing time (Tm). 
When the magnetization of spin A is inverted by a selective pulse 
at / = 0, the deviation of populations from equilibrium (x, = Pt 
-10,) for both spins can be written with use of Solomon's equation 
as42 

XD(O = /0D(^"-"" - <r(p+*>') 

XA(O = -/0A(^"""" + e-("+'>') 
(49) 

where p and a are the self- and cross-relaxation rates, defined as 

p = W0 + IW, + W2 a=W2-W0 (50) 

The continuous curves in Figure 3 show the NOE on the spin D 
as a function of the mixing time (T1n) for three different values 
of 0 and for three values of OJT.. The a in all these curves are 
assumed to be zero and the bistable jump is by 180°. The dashed 
curve in each case shows the corresponding NOE when the re­
laxation process is assumed to be governed by an overall correlation 
time (Tg) without internal motion, and the distance between the 
spins is assumed to be r,,-6 = (/•„-* + rb

_*)/2. For <«>Tg = 1.118, 
the dashed curve is zero for all values of /3 and Tn,. These results 

(43) (a) Duben, A. J.; Hutton, W. C. J. Magn. Resort. 1990, 88, 60-71. 
(b) Duben, A. J.; Hutton, W. C. J. Am. Chem. Soc. 1990,112, 5917-5924. 



/34» J. Am. L.nem. aoc , voi. 113, /vo. /w, yyyy r^risnnun ei ui. 

(d) 

(C) 

304 K 

^ J . ^ , ^ ^ , 1 , ^ y 

c j r g = 0 . 9 

co r c =0.32 1 

WTg =1.118 

0)T e =0.43 

~T 

(d') 

(c') 

d ) r g =1.4 

Ci)T^ =0.51 

(b') 

-CysNH 

C5H.C6H 

10.0 8.0 ppm 1ppm 

Figure 4. Trace (a) shows the low-field experimental one-dimensional spectrum of 1 at 270 MHz, at 292 K, in dimethyl sulfoxide-*/* solution. Traces 
(b), (c), and (d) are the experimental steady-state NOE difference spectra obtained at 292, 304, and 324 K, respectively, when the C'H and C H 
of tryptophan at 3.20 ppm are saturated, and the traces (b'), (c'), and (d') are the corresponding calculated spectra with \urv art\ values as (1.4, 0.51), 
(1.118,0.43), and (0.9,0.32), respectively. The calculated NOE's were obtained by assuming that the overall motion is an isotropic rotational reorientation 
and the segmental motion a bistable jump by 180°. Negative NOE observed on VaINH (*) and CysNH (*) in trace (b) are due to partial saturation 
of the corresponding 0 protons, which resonate near the 0 protons of tryptophan. All the experimental difference NOE spectra are scaled by 32 with 
respect to the one-dimensional spectrum (a), and the number of transients accumulated is 128, except in trace (b) where the number is 256 with a 
relaxation delay of 3 s. All the calculated spectra are plotted in the same arbitrary scale. While in the experimental spectra the NH resonances are 
broader than the ring proton resonances, in the calculated spectra an equal line width of 2 Hz was used for all the lines. 

show that the internal motion has a significant effect on the 
transient NOE as well as on the recovery of the inverted spin 
(curves not shown). The segmental motion is to reduce the ef­
fective correlation time in each case. 

These results suggest that the observed NOE on a spin without 
considering the details of the internal motion along with the 
relaxation process may lead to significantly different results. The 
differences introduced in the NOE buildup curves are large even 
for small mixing times and increase with /3. 

V. Experimental Results 
Figure 4 shows the steady-state NOE spectra of the tryptophan 

containing polypeptide 

Boc-Cys-Val-Trp-OMe 

Boc-Cys-Val-Trp-OMe 

1 

Trace a of Figure 4 shows the low-field region of the one-di­
mensional spectrum recorded on a Bruker 270-MHz FT NMR 
spectrometer equipped with a Aspect-2000 computer. Traces b-d 
correspond to the temperature dependence of the steady-state NOE 
when the C* protons of tryptophan are saturated. At room tem­
perature (Figure 4b) negative NOE on the backbone proton of 
Trp NH and positive NOE on the ring protons (Trp C7H and 
Trp C2H) is observed. On increasing the temperature to 304 K 
(Figure 4c) the backbone proton shows null NOE while the ring 
protons continue to show positive NOE. On further increase of 
temperature to 324 K (Figure 4d), both the backbone and the 

ring protons show positive NOE. These observations indicate that 
at 304 K the overall reorientation of the peptide is near the null 
region such that uTt at 1.118 while the segmental motion is such 
that coTe < 1.118. At lower temperatures WT1 > 1.118 and at 
higher temperatures wrg < 1.118, with iore remaining less than 
1.118 for all three temperatures. The room temperature 
steady-state NOE spectrum (Figure 4b) of this molecule was also 
reported earlier, where it was correctly suggested that the si­
multaneous observation of positive and negative NOE was due 
to the presence of segmental motion.8 In ref 8, no detailed cal­
culation of the NOE intensities was performed, which is done in 
this work on the basis of the model proposed here. The details 
of the conformation and the calculation are as follows. 

The NMR studies of this molecule suggested an antiparallel 
0-sheet conformation in the liquid state.44 Figure 5 shows a 
portion of the molecule in which the backbone is in an antiparallel 
(3-sheet conformation. The coordinates of the molecule are gen­
erated from the standard \p and <t> values of an ideal antiparallel 
/3-sheet. The axis of overall orientation is assumed to be along 
the VaI-C* and Trp-Ca carbons of the backbone, while the 
segmental motion is about the C^-C bond axis of the tryptophan 
(Figure 5). The angle A is the angle between these two axes. The 
semiangle of the cone of internal rotation (/3) for tryptophan and 
the various internuclear vectors in two states differing by 180° 
calculated from the geometry are listed in Table I. 

(44) Balaram, H.; Uma, K.; Balaram, P. Int. J. Protein Peptide Res. 1990, 
35, 495-500. 
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Table I. Geometrical Parameters from Figure 5 

For the Internuclear Vectors between Backbone and Side Chain 

internuclear vector 
from 

TrpNH 

Trp C-H 

Trp C H 

Trp C'H 

to 
C2H 
IndNH 
C4H 
C5H 
C6H 
C7H 
C2H 
IndNH 
C4H 
C5H 
C6H 
C7H 
C2H 
IndNH 
C4H 
C5H 
C6H 
C7H 
C2H 
IndNH 
C4H 
C5H 
C6H 
C7H 

Meg 
75.75 
21.76 
15.89 
41.99 
69.02 
85.93 
75.75 
21.76 
15.89 
41.99 
69.02 
85.93 
75.75 
21.76 
15.89 
41.99 
69.02 
85.93 
75.75 
21.76 
15.89 
41.99 
69.02 
85.93 

''iite It A 

4.98 
6.85 
7.99 
8.23 
6.86 
5.05 
4.35 
6.17 
7.31 
7.60 
6.30 
4.47 
3.34 
5.04 
6.18 
6.57 
5.44 
3.58 
3.32 
5.03 
6.16 
6.55 
5.43 
3.57 

riiie lit A 

5.01 
6.86 
8.00 
8.26 
6.90 
5.09 
4.38 
6.18 
7.32 
7.62 
6.34 
4.50 
3.36 
5.05 
6.19 
6.58 
5.46 
3.60 
3.34 
5.04 
6.17 
6.57 
5.45 
3.59 

For the Internuclear Vectors among the Side Chain 
internuclear vector 

from 
C2H 

IndNH 

C4H 

C5H 

C6H 

to 
IndNH 
C4H 
C5H 
C6H 
C7H 
C4H 
C5H 
C6H 
C7H 
C5H 
C6H 
C7H 
C6H 
C7H 
C7H 

0, deg 
26.53 
40.87 
58.72 
79.72 
81.69 
62.02 
78.98 
76.52 
51.22 
80.91 
57.55 
22.08 
22.71 
8.49 

37.62 

'ab-A 
2.71 
4.85 
6.36 
6.43 
4.95 
2.64 
4.57 
5.5 
5.02 
2.3 
4.05 
4.73 
2.33 
4.06 
2.35 

Multispin NOE calculations were performed by including all 
the protons of the Cys-Val-Trp backbone and side chains utilizing 
the generalized Solomon's equations. In these calculations, it is 
assumed that the overall motion is an isotropic reorientation and 
the segmental motion is a bistable jump by 180° with a = 0 and 
Ta = f b. The spectral density functions for the protons within the 
ring of the tryptophan that undergo a bistable jump are obtained 
from eq 43, and the relaxation of the dipolar vectors between the 
backbone and the side chain is governed by the spectral density 
functions given in eq 36. The results of the calculations are shown 
in Figure 4 (b', of, and d') with the parameters given in the caption. 
The calculated spectra show good correspondence with the ex­
perimental spectra. 

These results show that the segmental motion affects the 
steady-state NOE. The calculated spectra confirm the validity 
of the proposed model for the segmental motion in aromatic side 
chains. This type of model-based calculation can also be performed 
for transient and two-dimensional NOE experiments where it can 
be utilized for back calculations of the structure from the observed 
NOE. 

It may be mentioned that while the proposed model satisfac­
torily explains the observed experimental NOEs and their time 
dependences, it may be possible to obtain reasonable fits to the 
experimental data by other approaches, such as a phenomeno-
logical two-correlation time model or other model-free approaches. 
However, the advantage of a detailed model-based calculation is 

CysC 

Figure 5. Portion of molecule 1 in the antiparallel /3-sheet conformation. 
The proton coordinates of the molecule are generated by assuming the 
standard 0 and <p values corresponding to an ideal antiparallel /3-sheet 
conformation (0 = -139° and ^ = 135°). The axis of the overall motion 
is assumed to be along the line joining the VaIC to TrpC° carbons and 
the axis of internal motion is along the C'-CT bond axis (BC) of the 
tryptophan. The angle between these two axes (A) is calculated as 88° 
and according to the present model; it is the same for the dipolar vectors 
between the backbone and the ring protons. Any two protons in the 
molecule can be fit into the model discussed in Figure 1, and one such 
fragment, A(Trp CH), B(Trp C), C(Trp C) , and D(Trp C2H), is also 
shown. In this calculation it is assumed that the segmental motion takes 
place only around the C - C axis of tryptophan, while the rest of the 
molecule is rigid. The various internuclear distances and the semiangles 
of the cone of internal motion (/3) calculated from the geometry are listed 
in Table I. 

Figure 6. Part of the molecular fragment containing the atoms B, C, and 
D only. The atom D undergoes a bistable jump internal motion about 
Z1 through an angle /3, polar angle of r{ in S1, and an azimuthal angle 
a (a, and ab corresponds to the two sites of the bistable jump motion). 
The frame Sc(A1C1KCiZc) is the same as frame Sc(A1C1Kc1Zc), except 
the origin shifted from atom A to C. X and Z axes of the frames Si and 
S'c are on the same plane while the K axes are out of phase by 180°. 

that (i) it is possible to get more accurate fit to more complex 
relaxation or NOE data and (ii) it provides a detailed physical 
picture of the internal motions. 

VI. Conclusions 
A model for segmental motion superimposed on an overall 

anisotropic reorientation has been developed, with the segmental 
motion being a bistable jump modulating the internuclear dis­
tances. This model has been utilized for explaining the simul­
taneous observation of positive and negative NOE and its tem­
perature dependence in a peptide. The calculated spectra yield 
satisfactory correspondence with the observed experimental spectra 
and confirm the basic features of the model. While this paper 
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assumes only a bistable jump by 180°, other internal motions such 
as rotations by other angles, free rotations, vibrations, and dis­
tortions can also occur in a molecule. These need detailed cal­
culations using numerical methods like molecular mechanics and 
Monte Carlo simulation. 

In NOE calculations involving more than two spins, the 
cross-correlation between the different dipolar vectors often plays 
a significant role.45 When an internal motion is also present apart 
from the overall motion, the cross-correlation spectral density 
functions have additional information about the correlation be­
tween the two motions. The present model assumes that the global 
and segmental motions are independent of each other, hence 
multispin NOE have been calculated in this paper by neglecting 
the cross-correlation effects. 
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Appendix: Direction Cosines of the Dipolar Vector in the 
Internal Frame 

The coordinates of the nucleus D (tip of the vector T1) at any 
time t in the Si(Jf11K11Zi) are 

(45) (a) Krishnan, V. V.; Anil Kumar J. Magn. Resort. 1991,92,293-311. 
(b) Dalvit, C; Bodenhausen, G. Adv. Magn. Reson. 1990, 14, 1-33. 

Introduction 
Carbohydrates and glycoproteins are of great importance in 

biological recognition phenomena.1 Therefore, the interest in the 
synthesis and conformations of glycopeptides as partial structures 

Abbreviations: BOC, /*rr-butoxycarbonyl; COLOC, heteronuelear cor­
relation via long-range couplings; DQF-H.H-COSY, double quantum filtered 
proton-correlated spectroscopy; E.COSY, exclusive correlated spectroscopy; 
EDCI,yV-ethyl-AT'-[(dimethylamino)propyl]carbodiimide hydrochloride; 
HMBC, heteronuelear multiple bond correlation; HMQC, heteronuelear 
multiple quantum coherence correlation; HOBt, 1-hydroxybenzotriazole; 
solvent A, «-butanol/H20/acetic acid (3:1:1); solvent B, chloroform/methanol 
(9:1); solvent C, chloroform/methanol/acetic acid (95:5:3); NOE, nuclear 
Overhauser effect; NOESY, nuclear Overhauser and exchange spectroscopy; 
ROE, rotating frame NOE; ROESY, rotating frame Overhauser and ex­
change spectroscopy; TOCSY, total correlation spectroscopy; Z, benzyloxy-
carbonyl. 

x,(0 = r, sin /3 cos a(t) yt(t) = rx sin /3 sin a(t) 

z,(0 = r, COS(S ( A 1 ) 

where a is the azimuthal of the F1 vector as shown in Figure 6. 
Consider a frame of reference S'C(A"C,K'C,Z'C), the same as the 
reference frame of convenience Sc(Ao KC,ZC) except the origin 
is shifted from atom A to C where S c is the frame of convenience 
with the origin at atom A as defined in Figure 1. The frame of 
convenience is taken such that the X\ and Z1 axes are in the same 
plane as the X'c and Z ' c axes and the two K axes are 180° out 
of phase (Figure 6). The transformation from S'c to S1 is given 
by 

r*c«) 
/ c « 

|/c(0] 
= 

where A is the angle between the Z1 and the Z ' c or equivalently 
in terms of the geometry of the molecular fragment, given by 
(ZABC) - ir/2. On translating the origin from atom C to A the 
coordinates of nucleus D in the frame S c are 

*c(0 = 'AB + 'BC sin A + x ' c (0 ^c(O = y c(0 

z c (0 = 'BC cos A + z ' c(0 ( ' 

eqs 12-15 in the text are obtained by substituting eqs Al and A2 
in eq A3. 

of glycoproteins has increased considerably.2 Many applications 
for glycopeptides are currently being established, e.g., in the 
development of selective pharmaceuticals and for the improvement 
of pharmacokinetic properties.3 

Presently, very little is known about the mutual conformational 
influences between the protein or peptide structures and the 

(1) (a) Feizi, T. Nature 1985, 314, 53-57. (b) Goldstein, E. J. Carbo­
hydrate Protein Interaction. ACS Symp. Ser. 1979, No. 88. 

(2) (a) Meyer, B. Top. Curr. Chem. 1990, 154, 141-208. (b) Paulsen, H. 
Angew. Chem. 1990, 102, 851-67. (c) Schmidt, R. R. Angew. Chem. 1986, 
25, 213-236. (d) Kunz, H. Angew. Chem. 1987, 99, 297-311. 

(3) (a) Gabius, H. J. Angew. Chem. 1988, 100, 1321-1330. (b) Bundle, 
D. R. 14th International Carbohydrate Symposium (Stockholm/Sweden) 
14.8.-19.8.1988. 

Solution Structure of a Synthetic N-Glycosylated Cyclic 
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Abstract: The synthesis and conformational analysis by NMR spectroscopy and MD calculations of the N-glycosylated cyclic 
hexapeptide cyclo(->Pro-Phe-Ala-[Ar-2-acetamidc-2-desoxy-/3-D-glucopyranosyl)]Gln-Phe-Phe-) (I) and the cyclic hexapeptide 
precursor cyclo(-D-Pro~Phe-Ala-Glu(OtBu)-Phe-Phe-) (II) were carried out to study the influence of N-glycosylation on 
conformation of peptides. For both compounds, all of the distance constraints derived from 2D NOE measurements could 
not be satisfied by one conformation. Therefore, second conformers interconverting fast compared to the NMR time scale 
are assumed. The two conformations differ in the /3-turn structure between Ala3 and Phe6 (/31I- or /31-turns, respectively). 
The /3II'-turn about amino acids D-Pro1 and Phe2 is highly conserved in both MD simulations. The conformations were refined 
by using restrained MD simulations in vacuo and in water. Additional MD simulations with application of time-dependent 
distance constraints provide further information about the internal flexibility of I. The conformational equilibrium could be 
confirmed; several conformational changes were detected evidenced by a large number of torsion angle fluctuations during 
the time scale of the simulation. Both proposed backbone conformers were significantly populated. The averaging over coupling 
constants and NOE data reveal the high flexibility of the structure and the good agreement with experimental data for both 
I and II. The N-glycosylation does not affect the conformation or the overall shape of the peptide backbone or side chains. 
It has no influence on the hydrogen-binding pattern or on the fast dynamical equilibrium of the molecule. 

0002-7863/91 /1513-7550S02.50/0 © 1991 American Chemical Society 


